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LE'ITER TO THE EDITOR 

Wetting velocity near the directed percolation threshold 

M Khantha and J M Yeomans 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 
3NP, UK 

Received 19 November 1986 

Abstract. Near the directed percolation threshold, pd, the wetting velocity t' scales as 
( 1  - U) - (pd -p )" .  We extrapolate from calculations on strips of finite width to show that, 
on the two-dimensional square lattice, 8' = 1.73 * 0.02. This agrees with a scaling argument 
by Barma and Ray which predicts 8' = U,, . 

In recent years numerical work on strips of finite width has given considerable insight 
into the properties of spin and percolative systems (Vannimenus and Nadal 1984). In  
this letter we present results for a geometric problem defined on a percolation cluster, 
the wetting velocity. 

We consider a square lattice where bonds are present with probability p and absent 
with probability 1 - p  (Stauffer 1985). For p 2 p c ,  the critical percolation threshold, 
an infinite number of connecied bonds span the lattice. Let (x, ,  y l )  and (xz,  y r )  be 
two points on the infinite cluster with Cartesian separation 

(1) 
The chemical distance, Lchemr between the points is defined to be the shortest path 
along occupied bonds linking the two points (Havlin and Nossal 1984). The wetting 
velocity, U, is then given by (Dhar 1982, Barma 1985, Barma and Ray 1986) 

L = 1x1 -4 + IYI -A. 

(2)  
L 

u = lim -. 
 cc L e m  

The variation of U with p is interesting (Dhar 1982, Barma 1985) because it exhibits 
singularities not only at the percolation threshold, p c ,  where 

U - ( P - P C ) O  P+P: (3) 

1 - U - (p ,J (Y)  -p )e"" '  P + P d  (4) 

but also at the directed percolation threshold (Kinzel 1983), p d ( a ) ,  

where a is the angle between the direction along which U is measured and a diagonal 
of the square lattice. 

Extensive numerical simulations (Havlin and Nossal 1984, Herrmann et a1 1984, 
Vannimenus et a/  1984, Barma 1985, Edwards and Kerstein 1985, Grassberger 1985, 
Havlin et a /  1985, Martin 1985) have been carried out to determine the behaviour of 
U near p c .  In these the exponent v' defining the scaling of L with Lchem ( L2 - (LChe,J2') 
is determined. Using scaling arguments, it is easy (Barma 1985) to show that 

(5) e - y(i/v' - 1) 
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where v is the correlation length exponent. In two dimensions i=0.883*0.003 
and v = :. Therefore 8 = 0.176 i 0.005. 

The behaviour of U near pd has, however, remained largely unexplored. In  this 
letter we consider the behaviour of the wetting velocity between two points lying along 
the diagonal of a square lattice as p + p d .  The geometry which is relevant to this 
problem is shown in figure 1. We shall describe the diagonal between the allowed 
axes as the easy direction and use a to describe an angle relative to this direction. In 
directed percolation (Kinzel 1983) flow occurs along bonds for which a = *7~ /4 .  p d  
depends on a (Domany and Kinzel 1981) and hence the wetting velocity will become 
unity at a value of p = pd which is a dependent. Moreover, the associated exponent 
will depend on a. In this letter we restrict ourselves to the case a = O  for which pd is 
accurately known. 

Figure 1. A strip of width N. The arrows show the allowed flow if the directed problem 
is considered. Points (xI , y I )  and (x,, y 2 )  lie along the diagonal a = 0. 

An analytic solution of the problem on a Cayley tree gives 8’ = 1 with logarithmic 
corrections (Barma 1985) and real space renormalisation group results have been 
obtained for a hierarchical lattice (Barma and Ray 1986). Both results are consisteht 
with a scaling argument due to Barma and Ray (1986) which suggests 8’ = vIl, where 
vII is the parallel correlation length exponent for directed percolation (Kinzel and 
Yeomans 1981). We summarise this argument and then show that for the two- 
dimensional square lattice strip calculations indicate that 8‘ = vll to within the accuracy 
of our results. 

Consider two points along the diagonal (a =0)  of a connected cluster. Let the 
Cartesian separation between the two points be L >> ts ,  where is the parallel correlation 
length in directed percolation (Kinzel 1983). Close to p d ,  one would expect that the 
shortest path length between the two points will be made up of many directed segments 
of length 511 with the segments connected by bridges, which include bonds traversed 
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antiparallel to the easy directions, of mean length A. U is then given by 

U -511 
P - P i  (1, + A ’  

Re-writing this to demonstrate the divergence of 61, at P d ,  we obtain 

1 - U - ( P d  -P)”” P + Pd. ( 7 )  
Therefore, if A does not diverge at P d ,  8’ = vIl. 

To obtain the value 8‘ for the two-dimensional square lattice, a strip of width N 
with periodic boundary conditions in the transverse direction was built up row by row 
for bond concentration p = P d  = 0.6445 (Kinzel and Yeomans 1981) using a random 
number generator. The strip was oriented along a = 0. As each row was added the 
shortest path was determined at every point, care being taken to include connections 
from paths looping backwards. 

A problem which arises immediately is that the strip is broken with probability 
(1 -p)”. When this occurred the values of L and Lchem were recorded and the counting 
recommenced. Between 2000 and 3000 trials were made for widths up to N = 12 and 
a lesser number of trials for N larger than 12. This was adequate since the fluctuations 
from one sample to another were smaller for large strip widths because the typical 
length of the strip generated was around 20 000. Values of ( L ,  Lchem) were then plotted 
as shown in figure 2 for N = 13. The points lay on a good straight line for all values 
of N and for L 2 100. Therefore, if the strip was of length L < 100, the corresponding 
results were ignored. The remaining points were fitted to a straight line of which the 
gradient l / u  gave the wetting velocities listed for values of N from 9 to 15 in table 1. 
For lower values of N (between 4 and 8), it was difficult to generate many samples 
of length L a  100 and this introduced large errors in the estimation of u ( N ) .  For 
N > 15, the computer time needed to achieve sufficient accuracy was prohibitively large. 

Finite-size scaling (Vannimenus and Nadal 1984) implies that 

(8) 1 - U( N )  - N-e’/”i 

Figure 2. Variation of the shortest path length Lchcm with the Cartesian separation L for a 
typical value of the strip width, N = 13. 
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Table 1. The wetting velocity for different strip widths. The figure in the bracket denotes 
the error in the last digit. 

N U 

9 0.967 (3) 
10 0.971 (2) 
1 1  0.975 ( 1 )  
12 0.978 (1) 
13 0.981 (1) 
14 0.9827 (6) 
15 0.9847 (5) 

at P d .  Note that vl, the transverse correlation length exponent of the directed percola- 
tion problem (Kinzel 1983), and not vll appears in this expression because it is this 
correlation length that scales with the width of the strip (Kinzel and Yeomans 1981). 
ln(1- U )  was plotted against In N as shown in figure 3. Using the value v, = 1.103 
(Kinzel and Yeomans 1981) then gives 

e' = 1-73  * 0.02 (9) 

for the square lattice. For directed percolation on the square lattice vI1 = 1.739 f. 0.002 
(Kinzel and Yeomans 1981) and hence the numerical evidence supports the scaling 
argument of Barma and Ray (1986). Note that the argument depends on there being 
a finite number of steps in any backward loop at P d .  Our simulations gave no evidence 
that this is untrue. Further work on the Cayley tree also supports this statement (Barma 
and Ramaswamy 1986). 

We close by noting that the wetting velocity problem maps onto the behaviour of 
a random network of non-linear resistors with I -  V characteristic 

V = 1II"R sgn I (10) 

in the limit (Y + 0 (Blumenfeld and Aharony 1985, de Arcangelis et af 1985). 
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Figure 3. Variation of in( 1 - U )  with In( N )  at p = 0.6445 for strip widths N = 9 to 15. 
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